023-67558087

人力资源 | 下载中心  © 2018 重庆聚立信生物工程有限公司 页面版权所有 网站建设:中企动力重庆 渝ICP备18014687号-1

博恩

Laboratory Efficacy of Insecticidal Fungi for Control of Spodoptera frugiperda

分类:
研究学院
作者:
来源:
2020/07/13 14:01
浏览量
【摘要】:
Laboratory Efficacy of Insecticidal Fungi for Control of Spodoptera frugiperda
Chinese Journal of Biological Control
Spodoptera frugiperda (J. E. Smith) is a global major pest warned by FAO. To evaluate for potential of insecticidal fungi for control of S. frugiperda, we investigated theactivities of entomopathogenic fungi CQMa421 and ZJU435 against the larvae, pupae, adults and eggs of S. frugiperda and its effects on egg hatching and pupal eclosion under laboratory conditions. The results showed that Metarhizium anisoplae strain CQMa421 and Beauveria bassiana strain ZJU435 had larvicidal activity against
S. frugiperda young instars. The corrected mortality of the 1st instar larvae was 35.6% and 50.5% 10 days post inoculation of CQMa421 and ZJU435, respectively. With the increase of larval instar, the efficacy of the two fungal strains decreased, CQMa421 almost failed to infect the 4th instar larvae. Both CQMa421 and ZJU435 caused pupal melanization of S. frugiperda, and significantly reduced pupal eclosion by about 60% compared with the control group. However, CQMa421 and ZJU435 had no insecticidal activities to adults and did not affect female oviposition. In addition, the hatching rates of eggs inoculated with CQMa421 or ZJU435 were 82.8% and 90.7%, respectively, significantly lower than that of the control (100%). Further investigation revealed that the survival rate of the newly hatched larvae from eggs inoculated with CQMa421 or ZJU435 was reduced to 20.8% and 0.0%, respectively, and were significantly lower 
than that of the control (79.4%). These results indicated that CQMa421 and ZJU435 had great potential for control of S. frugiperda.
 
Key words: Spodoptera frugiperda;Metarhizium anisopliae;Beauveria bassiana; insecticidal activity
 
Reference
[1] Luginbill P. The fall armyworm[R]. USDA Technology Bulletin, 1928, 34: 2-7.
[2] Sparks A N. A review of the biology of the fall armyworm[J]. Florida Entomology, 1979, 62(2): 82-87.
[3] 姜玉英, 刘杰, 朱晓明. 草地贪夜蛾袭入我国的发生动态和未来趋势分析[J]. 中国植保导刊, 2019, 39(2): 33-35.
[4] 江幸福, 张蕾, 程云霞, . 草地贪夜蛾迁飞行为与监测技术研究进展[J]. 植物保护, 2019, 45(1): 12-18.
[5] 王磊, 陈科伟, 陆永跃. 我国草地贪夜蛾入侵扩张动态与发生趋势预测[J]. 环境昆虫学报, 2019, 41(4): 683-694.
[6] 吴秋琳, 姜玉英, 吴孔明. 草地夜贪夜蛾虫源入侵中国的路径分析[J]. 植物保护, 2019, 45(2): 1-6.
[7] 张磊, 明辉, 张丹丹, . 入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2): 19-24.
[8] Young J R, Mcmillian W W. Differentiation by two strains of fall armyworm larvae on carbaryl treated surfaces[J]. Journal of Economic Entomology,1979, 72(2): 202-203.
[9] Burtet L M, Bernardi O, Melo A A, et al. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) with Bt maize and insecticides insouth Brazil[J]. Pest Management Science, 2017, 73(12): 2569-2577.
[10] Mccord E, Yu S J. The mechanisms of carbaryl resistance in the fall armyworm, Spodoptera frugiperda(J. E. Smith)[J]. Pesticide Biochemistry andPhysiology, 1987(27): 114-122.
[11] Yu S J. Insecticide resistance in the fall armyworm, Spodoptera frugiperda(J. E. Smith)[J]. Pesticide Biochemistry and Physiology, 1991, 39(1): 84-91.
[12] Yu S J, Mccord E J. Lack of cross-resistance to indoxacarbin insecticide-resistance Spodoptera frugiperda(Lepidoptera: Noctuidae) and Plutella
axylostella(Lepidoptera: Yponomeutidae)[J]. Pest Management Science, 2007, 63(1): 63-67.
[13] Guti Rrez-Moreno R, Mota-Sanchez D, Blanco C A, et al. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to syntheticinsecticides in Puerto Ricoand Mexico[J]. Journal of Economic Entomology, 2018, 112(2): 792-802.
[14] Belay D K, Huckaba R M, Foster J E. Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to differential insecticides[J]. Florida Entomology, 2012, 95(2): 476-478. 734 中 国 生 物 防 治 学 报35
[15] 郭井菲, 赵建周, 何康来, . 警惕危险性害虫草地贪夜蛾入侵中国[J]. 植物保护, 2018, 44(6): 1-10.
[16] Chandrasena D I, Signorini A M, Abratti G, et al. Characterization of field-evolved resistance to Bacillus Thuringiensis-derived Cry1F delta-endotoxinin Spodoptera frugiperda population from Argentina[J]. Pest Management Science, 2017, 74(3): 746-754.
[17] Botha A S, Erasmus A, Duplessis H, et al. Efficacy of Bt maize for control of Spodoptera frugiperda(Lepidoptera: Noctuidae) in South Africa[J]. Journal of Economic Entomology, 2019, DOI: 10.1093/jee/toz048.
[18] McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis toxins[J]. Science, 1992, 258(5087): 1451-1455.
[19] Huang F, Qureshi J A, Head G P, et al. Frequency of Bacillus thuringiensisCry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida[J]. Crop Protection, 2016, 83(1): 83-89.
[20] Li G, Reisig D, Miao J, et al. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. PLoS ONE, 2016, 11(4): e0154492.
[21] Chandrasena D I, Signorini A M, Abratti G, et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperdapopulations from Argentina[J]. Pest Management Science, 2018, 74(3): 746-754.
[22] Akutse K S, Kimemia J W, Ekesi S, et al. Ovicidal effects of entomopathogenic fungal isolates on the invasive fall armywormSpodoptera frugiperda  (Lepidoptera: Noctuidae)[J]. Journal of Applied Entomology, 2019, DOI: 10.1111/jen.12634.
[23] 赵胜园, 杨现明, 孙小旭, . 常用农药对草地夜宵的室内防护作用[J]. 植物保护, 2019, 45(3): 21-26
[24] Prasanna B, Huesing J, Eddy R, et al. Fall Armyworm in Africa: A Guide for Integrated Pest Management[M]. México: CIMMYT, USAID, 2018.
[25] 唐启义, 冯明光. 实用统计分析及其 DPS 数据处理系统[M]. 北京: 科学出版社, 2002.

 

相关附件

暂时没有内容信息显示
请先在网站后台添加数据记录。