Synergistic Effects of Fungal Insecticides and Baci1lus thuringiensis against Spodoptera frugiperda in Laboratory



Synergistic Effects of Fungal Insecticides and Baci1lus thuringiensis against:  Spodoptera frugiperda in Laboratory
Chinese Journal of Biological Control
Spodoptera frugiperda(J. E. Smith) is a global migratory pest. To evaluate the potential of combined
microbial insecticides for control of S. frugiperda, the combinations of two microbial pesticides among
Metarhizium anisopliaeCQMa421, Beauveria bassianaZJU435 and Baci1lus thuringiensis(Bt) G033A were
investigated under laboratory conditions. The results showed that the combination of CQMa421-ZJU435 achieved the corrected mortality of 65.6%, 58.8% and 35.4% against the 1st, 2ndand 3rdinstar larvae, respectively, significantly higher than that in the treatments with CQMa421 or ZJU435 alone at 10 days post inoculation. Five days post inoculation of CQMa421-Bt, the corrected mortality of the 4thinstar larvae was 82.6%, significantly higher than that in the treatment with CQMa421 (21.1%) or G033A (65.5%alone. Five days post inoculation of ZJU435-Bt, the corrected mortality of the 2ndand 4thinstar larvae were 80.4% and 68.6%%, significantly higher than that in the treatment with ZJU435 or G033A alone. This indicates that combination of different fungal insecticides with Bt could effectively improve the insecticidal activity against S. frugiperdaa larvae. These results have paved the way for mixed application microbial pesticides for control ofS. frugiperdain field.
Key words: Spodoptera frugiperda;Metarhizium anisopliae;Beauveria bassiana; Baci1lus thuringiensis;
insecticidal activity
[1] Sparks A N. A review of the biology of the fall armyworm[J]. Florida Entomology, 1979, 62(2): 82-87.
[2] Montezano D G, Specht A, Sosa-Gómez D R, et al. Host plants of Spodoptera frugiperda(Lepidoptera: Noctuidae) in the Americas[J]. African Entomology, 2018, 26(2): 286-300.
[3] 姜玉英, 刘杰, 朱晓明. 草地夜袭我国的发生动态和未来趋势分析[J]. 中国植物保护杂志, 2019, 39(2): 33-35.
[4] Dumas P, Legeai F, Lemaitre C, et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?[J]. Genetica, 2015, 143(3): 305-316.
[5] 张磊, 靳明辉, 张丹丹,.入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2): 19-24.
[6] 王磊, 陈科伟, 陆永跃. 我国草地贪夜蛾入侵扩张动态与发生趋势预测[J]. 环境昆虫学报, 2019, 41(4): 683-694.
[7] Burtet L M, Bernardi O, Melo A A. Managing fall armyworm, Spodoptera frugiperda(Lepidoptera: Noctuidae), with Bt maize and insecticides in south Brazil[J]. Pest Management Science, 2017, 73(12): 2569-2577.
[8] Food and Agriculture Organization of the United Nations. Integrated management of the fall armyworm on maize. A guide for farmer field schools in Africa[R]. 2018. Http:www. Fao. Org/3/i8741en/I8741EN. pdf.
[9] Yu S J. Insecticide resistance in the fall armyworm,Spodoptera frugiperda(J. E. Smith)[J]. Pesticide Biochemistry and Physiology, 1991, 39(1): 84-91.
[10] Yu S J. Detection and biochemical characterization of insecticide Resistance in fall armyworm (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology, 1992, 85(3): 675-682.
[11] Rios-diez J D, Saldamando-benjumea C I. Susceptibility ofSpodoptera frugiperda(Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: a study of the genetic basis of resistance[J]. Journal of Economic Entomology, 2011, 104(5): 1698-1705.
[12] Zhu Y, Blanco C A, Portilla M, et al. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda[J]. Pesticide Biochemistry and Physiology, 2015, 122: 15-21.
[13] Clarkson J M, Charnley A K. New insights into them mechanisms of fungal pathogenesis in insects[J]. Trends Microbiology, 1996, 4(5): 197-203.
[14] de Faria, M R, Wraight, S P. Wraight mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types[J]. Biological Control 2007, 43(3): 237-256.
[15] McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis toxins[J]. Science; 1992, 258(5087): 1451-1455.
[16] Huang F, Qureshi J A, Head G P, et al. Frequency ofBacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida[J]. Crop Protection, 2016, 83: 83-89
[17] Li G, Reisig D, Miao J, et al. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. PLoS ONE, 2016, 11(4): e0154492.
[18] Chandrasena D I, Signorini A M, Abratti G, et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperdapopulations from Argentina[J]. Pest Management Science, 2018, 74(3): 746-754.
[19] 赵胜园, 杨现明, 孙小旭, . 常用生物农药对草地夜宵的室内防效[J]. 植物保护, 2019, 45(3): 21-26.
[20] 中国农药信息网( 2019.
[21] Wang G., Zhang J, Song F, et al. Engineered Bacillus thuringiensisG033A with road insecticidal activity against Lepidopteranand Coleopteranpests[J]. Applied Microbiology and Biotechnology, 2006, 72: 924-930.
[22] 王广君, 张杰, 宋福平 等. 苏云金芽胞杆菌工程菌 G033A 及其制备方法[P]. 中国发明专利. (ZL200310100197.8).
[23] 唐启义, 冯明光. 实用统计分析及其 DPS 数据处理系统[M]. 北京: 科学出版社, 2002.
[24] 胡丰林, 樊美珍, 李增智. 一种白僵菌代谢产物中生物活性物质的研究 I: 具有清除自由基的活性物质的分离和制备菌物系统[J]. 菌物系统, 2000, 19(4): 522-528.
[25] Kershaw M J, Moorhouse E R, Bateman R, et al. The role of destruxins in the pathogenicity of Metarhizium anisopliaefor three species of insects[J]. Journal of Invertebrate Pathology, 1999, 74: 213-223.
[26] 邝灼彬, 吕利华, 冯夏, . 温度及常见农药对球孢白僵菌生物学特性的影响[J]. 华南农业大学学报, 2005, 26(3): 26- 29.
[27] 汪敏捷, 刘强. 不同温湿度下绿僵菌对红缘天牛幼虫致病力的影响[J]. 环境昆虫学报, 2014, 36(2): 151-156.
[28] Faust G M, Abe K, Held G A, et al. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensissubsp. israelensis[J]. Plasmid, 1983, 9(1): 98-103
[29] Mwamburi L A, Laing M D, Miller R. Interaction between Beauveria bassianaand Bacillus thuringiensisvar. israelensisfor the control of house fly larvae and adults in poultry houses[J]. Poultry Science, 2009, 88(4): 2307-2314.
[30] Wakil W, Ghazanfar M U, Riasat T, et al. Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensisand chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigerafield populations[J]. Phytoparasitica, 2013, 41(2): 221-234.
[31] Ali K, Wakil W, Zia K, et al. Control of Earias vittella (Lepidoptera:Noctuidae) by Beauveria bassianaalong with Bacillus thuringiensis[J]. International Journal of Agriculture and Biology, 2015, 17, 773-778.
[32] Yaroslavtseva O N, Dubovskiy I M, Khodyrev V P, et al. Immunological mechanisms of synergy between fungus Metarhizium robertsiiand bacteria Bacillus thuringiensisssp.morrisonion Colorado potato beetle larvae[J]. Journal of Insect Physiology, 2017, 96(1): 14-20.